On a general approach to the formal cohomology of quadratic Poisson structures
نویسندگان
چکیده
We propose a general approach to the formal Poisson cohomology of r-matrix induced quadratic structures, we apply this device to compute the cohomology of structure 2 of the Dufour-Haraki classification, and provide complete results also for the cohomology of structure 7. Key-words: Poisson cohomology, formal cochain, quadratic Poisson tensor, r-matrix 2000 Mathematics Subject Classification: 17B63, 17B56
منابع مشابه
Formal Poisson Cohomology of Twisted r–Matrix Induced Structures
Quadratic Poisson tensors of the Dufour-Haraki classification read as a sum of an r-matrix induced structure twisted by a (small) compatible exact quadratic tensor. An appropriate bigrading of the space of formal Poisson cochains then leads to a vertically positive double complex. The associated spectral sequence allows to compute the Poisson-Lichnerowicz cohomology of the considered tensors. W...
متن کاملStrongly r–matrix induced tensors, Koszul cohomology, and arbitrary–dimensional quadratic Poisson cohomology
We introduce the concept of strongly r-matrix induced (SRMI) Poisson structure, report on the relation of this property with the stabilizer dimension of the considered quadratic Poisson tensor, and classify the Poisson structures of the Dufour-Haraki classification (DHC) according to their membership of the family of SRMI tensors. One of the main results of our work is a generic cohomological p...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملEndoscopy and the cohomology of $GL(n)$
Let $G = {rm Res}_{F/mathbb{Q}}(GL_n)$ where $F$ is a number field. Let $S^G_{K_f}$ denote an ad`elic locally symmetric space for some level structure $K_f.$ Let ${mathcal M}_{mu,{mathbb C}}$ be an algebraic irreducible representation of $G({mathbb R})$ and we let $widetilde{mathcal{M}}_{mu,{mathbb C}}$ denote the associated sheaf on $S^G_{K_f}.$ The aim of this paper is to classify the data ...
متن کاملAn iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...
متن کامل